
 

 

1.    INTRODUCTION 

The MoFrac discrete fracture network (DFN) modeling 

software (MIRARCO, 2019) implements a rules-based 

methodology to generate plausible fracture networks 

guided by information derived from mapped data. 

(Junkin, et al., 2017; 2018). DFN models can range from 

entirely stochastic to highly constrained to known data. 

Information concerning the characteristics of a rock mass 

can be derived from a DFN model; this includes, inter 

alia, fracture intensity, block size, and flow connectivity. 

This paper demonstrates a method, through voxelization, 

to derive information regarding fracture intensity 

variability and in situ block size distribution (IBSD) of 

DFN models useful for incorporating into secondary 

studies such as hydrogeological flow, fragmentation, and 

slope stability analysis. 

MoFrac can generate DFN models entirely stochastically, 

or constrained by known fracture locations and 

orientations. Stochastic fractures in the models do not rely 

on any geological mapping, and are defined through 

orientation, size, and intensity distributions for each 

fracture set over specified regions. This study considers 

entirely stochastic DFN models defined over a single 

region. While the input values for the primary properties 

of the DFN model remain constant, variability in the DFN 

model is expected as a result of the Poisson point process 

used for seeding fractures.  

A metrics analysis package built-in to MoFrac allows for 

consideration of a DFNs fit to any mapped data, and also 

allows for statistical analysis of modeled fracture 

attributes. The metrics also allow for the sampling of a 

DFN model over given planes or volumes, allowing for 

the analysis of separate and discrete regions of a DFN 

model. 

By discretizing a DFN model into component cubes, a 

measure of variation in fracture intensity and an 

estimation of the IBSD are feasible. The limit to the 

minimum size and thus maximum number of samples 

(cubes) is the available computational power. Sampling a 

DFN discretized 100 times on each axis results in 1 000 

000 calculations of fracture intensity in a given volume. 

This involves cutting fracture surfaces at the boundaries 

of all sampled volumes.  

The calculation of the IBSD from a DFN is also 

computationally demanding. The Ray Cast Volume 

algorithm is a simple method used to estimate IBSD from 
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ABSTRACT: A fracture network model provides a wealth of information concerning the characteristics of a rock mass, including 

fracture intensity, block size, and connectivity. This paper identifies methods to utilize information derived from DFN models. The 

fracture intensity of a DFN can be analysed for individual or grouped subvolumes of the model. A DFN is discretized into volumetric 

elements (voxels). Stochastic DFN models measuring 25 × 25 × 25 m3 are modeled with identical attributes. Fractures are modeled 

as non-planar and non-persistent, and orientations varied to generate a variety of block shapes and sizes. The voxels used for metrics 

analysis range in size from 1 m3 to 1 953 m3, representing from 23 to 253 voxels. Fracture intensity is measured as a P32 value for all 

elements. The coefficient of variation (CV%) of fracture intensity is calculated for each voxelization to generate a curve characteristic 

of a particular DFN model. An estimate of the in situ block size distribution (IBSD) is made by considering the number of unfractured 

voxels (null blocks). The fracture intensity, CV% of fracture intensity and IBSD values derived from these DFNs can be used as 

input to a variety of secondary models. 

 

 

 

 

 

 

 



 

 

a DFN but is limited by its ability to detect concave blocks 

as it involves casting linear rays from random points 

within the DFN model (Medinac, 2018). Latham et al. 

(2006) discuss several methods of estimating block size 

distribution within a rock mass and their associated 

limitations. The ability to generate an entire IBSD 

assessment from a fracture network model is 

advantageous as pre-existing data can be utilized. 

Assessing the entire IBSD from a fracture network can 

lead to accurate results. Other methods of estimation can 

be biased by mapping protocols and limited data. 

Currently, the unavailability of efficient algorithms limit 

the ability to conduct IBSD assessment using a DFN 

model. 

2.   DFN VOXELIZATION 

A voxel is a volumetric element of a regular grid in three 

dimensional space. Voxels generally constitute an array 

of discrete elements that represent a three dimensional 

object (Cohen-Or and Kaufman, 1995). For the purpose 

of this study, the three dimensional object is a DFN model 

that measures 25 × 25 × 25 m3 (15 625 m3). The size of a 

voxel is inversely proportional to the number of 

subdivisions on each axis of the Cartesian coordinate 

system. The DFN models will be divided equally along 

each axis, resulting in cubic voxels. Table 1 gives the size 

of a single voxel in relation to the number of subdivisions 

of each axis for the 15 625 m3 DFN model used for this 

study. The process of voxelization allows for a DFN 

model to be discretized in the form of a block model with 

the number of blocks equal to the number of voxels. 

Table 1. Voxel size in relation to the number of subdivisions of 

a 25 × 25 × 25 m3 volume. 

Subdivisions per Axis # of Voxels  
Size of Voxel 

(m3) 

1 1 15 625  

5 125 125 

10 1 000 15.62 

15 3 375 4.63 

20 8 000 1.95 

25 15 625 1 

 

The goal of this study is to develop a methodology for 

measuring the heterogeneity of DFNs in a way that 

facilitates comparisons between models. Voxelization 

allows for spatial analysis at multiple scales. The property 

of interest for each voxel is the P32 fracture intensity. P32 

intensity is the sum of the surface areas of fractures within 

a given volume divided by that volume, calculated as 

shown in Equation (1) (Rogers, et al., 2009). 

𝑃32 =
∑ 𝐴𝑛1
𝑉

                            (1) 

The benefit of using P32 intensities to characterize a DFN 

is that this measure is scale-independent, and there is no 

bias related to the direction of measurement, as occurs 

with P21 values (Dershowitz and Herda, 1992; 

Alghalandis and Elmo, 2018). 

The P32 intensity of DFN models will be considered for 

ten realizations of the stochastic DFN model defined in 

Section 3. To analyze the DFN models, 1 through 25 

subdivisions are used. Figure 1 shows an example of a 

simple cube subdivided into 1000 component voxels 

(103).  

 

Figure 1. Example of a 10 × 10 × 10 voxelization of a 

simple cube resulting in 1000 voxels. 

3.   STOCHASTIC DFN RECIPE 

Ten realizations of a completely stochastic DFN model 

were generated using MoFrac. The primary properties 

used for modeling include orientation, size, and intensity 

distributions. The DFN is defined over a single 

homogenous domain; there is no spatial variation with 

inputs. Fractures are seeded using a Poisson point process 

and no truncations or terminations are defined; minimum 

and maximum fracture size are defined inputs. The 

primary properties required for basic DFN modeling are 

defined and described below (Dershowitz, et al., 2017).  

The size of the DFN model is 25 × 25 × 25 m3, for a total 

volume of 15 625 m3. Three fracture sets are defined. 

Fracture sets A and B are dipping subvertically; fracture 

set A is defined as striking North-South and fracture set B 

is defined as striking East-West. Fracture set C dips 

subhorizontally. The input fracture orientation assumes a 

Gaussian distribution and is defined by a strike and dip 

for each fracture set with an associated standard deviation 

(SD) for each value. The orientation inputs for each are 

given in Table 2.  

Table 2. Input orientations and standard deviations for each 

fracture set in the stochastic DFN model. 

Fracture set Strike SD of strike Dip SD of dip 

A 0° 15° 90° 15° 

B 90° 15° 90° 15° 

C 35° 15° 0° 5° 

 

 



 

 

The fracture size distribution is guided by a power law 

distribution, and is defined as two points on a cumulative 

area distribution (CAD) curve. X 1 and X2 are the numbers 

of fractures > threshold by volume and A1 and A2 are the 

fracture surface areas for the associated X values. The 

area samples used to generate fractures are based on a 

uniform sampling with randomization of the sampled area 

to allow for variety between realizations. A minimum 

fracture surface size of 50 m2 and a maximum fracture 

surface size of 100 m2 is defined as an input. The fracture 

size and intensity inputs are given in Table 3.  

Table 3. Size and intensity inputs and P32 output for each 

fracture set in the stochastic DFN model. 

Fracture 

Set 

Min 

Size 
(m2) 

Max 

Size 
(m2) 

X1 
A1 

(m2) 
X2 

A2  

(m2) 

P32 

(m-1) 

A 50 100 0.004 50 0.002 100 0.35 

B 50 100 0.005 50 0.003 100 0.35 

C 50 100 0.006 50 0.004 100 0.46 

 

Secondary properties defined for the DFN models are 

required inputs for MoFrac, and are summarized in Table 

4. Fracture truncations are defined as a probability of 

termination between each pair of fracture sets; no 

truncations are defined for this model. Stochastic 

fractures have their size limited explicitly. The strike to 

dip ratio controls the aspect ratio of the fracture shape. It 

defines the limits of the ratio of fracture strike length to 

fracture dip length. The undulation value allows for 

surface waviness of the fracture. The degree of waviness 

is unitless and a relative scale normalized from 0 to 1. The 

degree of undulation is also determined by the triangle 

size, as the undulation parameter controls fracture mesh 

tessellation. All reported fracture surface areas are based 

on a planar realization of an undulated fracture; the 

additional area associated with undulation is not included.  

Table 4. Secondary properties used for DFN modeling.  

Fracture set A B C 

Min strike to dip ratio 1 1 1 

Max strike to dip ratio 5 5 5 

Fracture shape Elliptical Elliptical Elliptical 

Undulation 0.25 0.25 0.25 

Truncation 0 %  0 % 0 % 

Triangle Size 100 m2 

 

Ten realizations of the DFN model were generated for 

further analysis. A single realization is shown in Figure 2; 

each fracture set is shown individually, as well as the 

whole DFN model. Slices passing through the center of 

the model on the XY, XZ and YZ plane are also shown. 

P21 values for each realization on these planes are given 

in Table 5 along with P32 values for each DFN as a whole. 

 

Figure 2. Visual representation of a single DFN realization. (a) 

Fracture set A, (b) fracture set B, (c) fracture set H, and (d) the 

entire DFN model with slices in the (e) XY plane, (f) XZ plane, 

(g) YZ plane, and (h) all three planes. 

 

4.   DFN BOUNDARY EFFECT 

An analysis of any potential boundary effect should be 

carried out before a DFN is accepted as representative of 

a rock mass. The boundary effect is caused by the fact that 

some fractures that would be seeded just out of bounds 

and would propagate into the DFN model are not included 

in the model, reducing fracture intensity at the boundaries. 

This can be rectified by increasing fracture intensity at 

boundaries using simulated mapped fracture traces. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 



 

 

Table 5. P21 and P32 fracture intensities for the DFN models  

DFN 

model 

P21 XY 

plane 

P21 XZ 

plane 

P21 YZ 

plane 
P32  

1 0.84 1.04 1.12 1.20 

2 0.70 1.06 1.05 1.18 

3 0.93 1.12 1.11 1.19 

4 0.99 1.09 1.05 1.20 

5 1.05 1.06 0.95 1.19 

6 0.69 1.08 1.06 1.21 

7 0.82 1.13 1.06 1.19 

8 0.72 1.15 1.05 1.20 

9 0.93 1.10 1.13 1.21 

10 0.94 1.11 1.10 1.19 

Mean 0.86 1.09 1.07 1.20 

Standard 

Deviation 
0.1273 0.0333 0.0517 0.0083 

 

The boundary effect for a DFN model is quantified by 

considering the difference in P32 fracture intensities 

between interior and exterior regions of the DFN model 

as shown in Figure 3. 

 

Figure 3. Schematic showing the regions used to quantify the 

DFN boundary effect. 

The process of determining the boundary effect 

considered preliminary boundary distances of 1 – 8 m. 

The P32 of the model as a whole (P32M), the interior region 

(P32I), and the boundary region (P32B) are all calculated in 

order to quantify the extent of the boundary effect. By 

plotting P32M – P32B the differences in fracture intensity 

can be compared. The boundary effect extends to the 

point where the difference between P32M and P32B is a 

maximum. Past this point there is sufficient fracture 

intensity in the boundary region to reduce the difference 

in intensities. Figure 4 shows the curves for the calculated 

differences in intensity with respect to the linear distance 

from the DFN boundary to the interior inspection box. A 

boundary effect of 3.8 m is calculated when data for all 

ten DFN realizations is considered. 

 

Figure 4. The quantification of the boundary effect for all ten 

realizations of the DFN model. 

Where DFN models are identified as having a change in 

fracture intensity resulting from a boundary effect, special 

care should be taken when considering application of the 

model. Having an underestimation of fracture intensity at 

boundaries could have significant effect on the 

conclusions from secondary studies using the DFN 

models. It is desirable to have mapped traces or fracture 

seeds on the exterior boundaries of a DFN model to 

mitigate this risk on modelling outcomes. Where faces are 

not visible for geological mapping, two simple solutions 

can be used. A slice through the center of a DFN can be 

used to estimate the P21 fracture intensity where the 

boundary effect does not exist. This fracture intensity can 

then be used to stochastically seed fracture traces on the 

boundaries of a DFN model. Where fracture mapping is 

possible, the actual fracture traces can be used for seeding 

on visible faces. The P21 of mapped fractures can then be 

used to stochastically seed opposing faces that are hidden 

by the rock mass. This allows for increased utilization of 

information derived from fracture mapping.  

5.   COEFFICIENT OF VARIATION 

The coefficient of variation (CV%) is a measure of the 

variability of a set of numbers. This variability is 

independent of the unit of measurement, and CV% is 

applicable for comparison of data on multiple scales 

and/or using different measurement systems (e.g., metric 

or imperial). CV% is calculated by dividing the standard 

deviation for a population of numbers by the mean; the 

CV% only applies meaningfully to variables with a real 

zero (Abdi, 2010); thus, applicable to P32 fracture 

intensities. When CV% > 1, the sample of numbers is 

considered to have high variability, and when CV% < 1 

the sample of numbers is considered to have low 

variability. The threshold at which variability is 

considered significant can be adjusted according to the 

statistics of a DFN model. High variability should be 

considered relative to the overall variability of the model.  
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Coefficients of fracture intensity variability are calculated 

for each voxelization considered in Section 2. The CV% 

values are calculated based on the entire population of P32 

values, thus there is no sampling bias. It is expected that, 

as the sampled volumes decrease, the CV% will increase. 

The rate at which the CV% increases with a reduction in 

volume can be plotted as a curve that is characteristic to 

the DFN model (Min, et al., 2004). This characteristic plot 

can be used to analyze a specific DFN and to compare one 

DFN to another. This presents an opportunity to use the 

CV% curve as a validation for a stochastic DFN based on 

mapped data. 

Figure 5 shows the CV% curve for ten realizations of the 

same stochastic DFN model as described. The red line 

shows the average CV% for each data point. The CV% 

curves for individual realizations are in agreement with 

one another. Despite this fact, the P21 values on identical 

planes can vary significantly between realizations. This 

demonstrates that the CV% curve is a global attribute for 

a DFN model and has potential as a tool for model 

calibration. 

 

 

Figure 5. Relation between sampled block size and fracture 

intensity coefficient of variation for stochastic DFN model on a 

semi-log plot. 

The information derived by analysis of individual voxels 

within a DFN can also be used to allow for visualization 

of fracture intensity variation within a DFN. This is 

demonstrated through the creation of a fracture intensity 

map for a horizontal section of a DFN model. Figure 6 

shows the variation in fracture intensity when considering 

a voxelization of 10 × 10 × 10 for a single realization. A 

single square in this fracture intensity heat map represents 

a voxel that is 15.62 m3, with a face area of 6.25 m2. The 

fracture intensity variability is shown visually by means 

of a heat map. The values for each fracture intensity bin 

and associated color are given in Table 5, with the 

resulting fracture intensity heat map shown in Figure 6. A 

blue square indicates a null block, meaning that no 

fractures are present. The spatial arrangement of null 

blocks across an entire DFN model allows for an 

estimation of the IBSD. The heat map can be visually 

checked by overlaying fracture traces from the same DFN 

slice, as shown in Figure 6.  

The variation in P32 intensities can be shown with a 

histogram. Figure 7 shows how the variation in P32 is 

dependent upon the sampled voxel size. Histograms are 

shown for 25 (1 m3 voxels), 15 (4.63 m3 voxels), and 5 

(125 m3 voxels) divisions per axis.  

 

Figure 6. Fracture intensity heat map for a DFN slice from z = 

0 to z = 2.5 with colors as defined in Table 5. Heat map (a) with 

P32 values and (b) with fracture traces from z = 1.25. (Table 5 

is to be used as a legend) 

 

Table 5. Fracture intensity bins for heat mapping (legend for 

Figure 6). 

Fracture 

intensity 
P32 Low P32 High Color 

None 0 0.00001  

Low 0.00001 0.5  

Medium 0.5 1  

High 1 1+  
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A benefit of calculating P32 fracture intensity for 

individual voxels is that it allows for a means of 

calculating the representative element volume of the DFN 

model. Liu et al. (2018) used the P32 values for sampled 

cubes with a DFN to determine the representative 

elementary volume (REV). The voxelization process here 

identifies the P32 intensity for all voxels on the Cartesian 

grid. These values can be used as proxies for the sampled 

values used by Lui et al. (2018). Figure 8 shows the 

relation between fracture intensity variability and block 

side length. The REV can be statistically identified using 

a Chi-square goodness-of-fit test. 

 

 

 

Figure 7. Three histograms showing changes in variability of 

P32 fracture intensity with the degree of voxelization for a single 

DFN realization. DFN discretization of 25×25×25 (a), 

15×15×15 (b), and 5×5×5 (c). 

 

6.   IN SITU BLOCK SIZE DISTRIBUTION (IBSD) 

ESTIMATION 

The IBSD of a rock mass is an important variable used for 

rock mass characterization. New methods of calculating 

or estimating this parameter are of importance, and 

complements rock mass classification systems such as 

RMR (Bieniawski, 1989), the Q system (Barton, et al., 

1974), and GSI (Hoek et al., 1995), and can improve 

characterization techniques (Elmo et al., 2014). The 

traditional methods of calculating average block size and 

distributions are reviewed by Maerz and Germain (1996), 

Lu (1997), and Palmström (2000). The traditional 

methods rely on many assumptions and generalizations in 

order to characterize a rock mass sufficiently to predict 

block sizes. Block size distributions are often determined 

numerically as a function of joint spacing and the number 

of fracture sets. It is a computationally expensive process 

to determine block sizes directly from a large three 

dimensional DFN model. A method of predicting the 

IBSD of a DFN model that is derived from the P32 

voxelization is presented here. 

 

Figure 8 Volumetric fracture intensity variability for different 

cube sizes. 

By calculating the P32 fracture intensity for all voxels in 

the DFN, the number of null blocks, that is, voxels with a 

fracture intensity of zero, can be quantified. With a set of 

null blocks within a DFN, an estimation of the IBSD can 

be made. Where a null block is identified, the IBSD 

algorithm searches the 6-adjacent blocks that share a face 

with the known null block (Cohen-Or and Kaufman, 

1995). This allows for the formation of compound blocks 

where neighboring blocks also contain no fractures.  

The initial compound blocks tend to form highly concave 

geometries. The second part of the IBSD algorithm 

checks the density of a compound block by assigning a 

null block a value of 1; the fractured volume surrounding 

the compound block required to achieve convexity is 

assigned a value of 0. Figure 9 shows three examples of 

compound null blocks (in blue) and the associated 

densities. The empty space required to achieve convexity 

is fractured rock. The calculated density is the null block 

volume divided by the total volume. A density threshold 

is a required input for the IBSD algorithm. This threshold 

determines when compound blocks should be split due to 

concavities.  
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Figure 9. Density test for concave compound null blocks  

Figure 10 shows the complete set of null blocks for a 

single DFN realization at different density thresholds. 

Thresholds of 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 were 

considered for the DFN model. The degree of block 

splitting can be seen by the number of colors when 

considering the entire model. A specific compound block 

is highlighted (in yellow) to demonstrate the effect of the 

block splitting thresholds. A density threshold of 0.4 

results in one split of the compound block, whereas a 

density threshold of 0.9 results in 7 splits and 8 

component blocks. 

This feature is designed to allow for variation in the 

analysis of a DFN model that corresponds to the natural 

state of the rock mass. When a rock mass is massive and 

relatively unfractured, a lower threshold would be used. 

When a rock mass is very blocky and disturbed, a higher 

threshold would be appropriate. 

The resulting block size distributions for each threshold 

are plotted in Figure 11. The IBSD of an intact rock mass 

can be expected to follow a power law relation (Lu, 1997; 

Srivastava, 2006). This information will be used to 

determine the optimum threshold for this particular DFN 

model by investigating the R2 value for the power law 

equation that best fits the data. Although R2 values may 

not be representative of a true power law distribution, they 

do give some indication of agreement with a power law 

distribution, especially when extreme values on the tail of 

the distribution are removed (Clauset, et al., 2009). Where 

the R2 value is highest, the data is best represented by a 

power law relation. This is a useful tool to determine what 

threshold to apply when there is no existing data on the 

state of the rock mass. Table 6 gives the R2 values when 

considering all compound null blocks within the DFN 

model. The highest R2 value achieved is 0.85 when 

considering a density threshold of 0.7. 

When no fractures are seeded on the exterior surfaces of 

a volume, it is expected that there will be a lower fracture 

intensity on the boundaries. This boundary effect is seen 

in the visualization of blocks presented by Rogers et al. 

 

Figure 10. Determination of in situ block sizes using density 

thresholds of (a) 0.4, (b) 0.5, (c) 0.6, (d) 0.7, (e) 0.8, and (f) 0.9, 

with an example showing block subdivisions. 
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(2009), and can be seen in Figure 10, where the larger 

blocks are all near the boundaries of the model  

 

Figure 11. Block size distributions including all data for 6 block 

density thresholds. 

Table 6. R2 values for the best fit power law equation to the data 

including all blocks. 

Block 

density 
0.4 0.5 0.6 0.7 0.8 0.9 

Power 

law R2 0.71 0.73 0.74 0.85 0.83 0.80 

 

In order to reduce the boundary effect on the estimated 

block size distribution, the blocks with a volume greater 

than 25 m3 are removed from the dataset to give the plot 

presented in Figure 12. It can be seen that this causes a 

more distinct power law relationship between block size 

and frequency, which is demonstrated by the data 

concerning R2 values presented in Table 7 for the best fit 

power law equation.  With the arger boundary blocks 

removed from the dataset, the R2 value is again highest 

for a 0.7 density threshold, with a value of 0.94.  

As the density threshold of 0.7 yields the best fit to a 

power law relation when larger blocks are removed from 

the data, the values from this analysis are further 

investigated by plotting a percentage passing curve, 

presented in Figure 13. The minimum block size for this 

data is 1 m3, thus no blocks smaller than 1 m3 will be 

accounted for.  

Figures 12 and 13 show only the smaller blocks within the 

distribution; the extreme values on the tail of the 

distribution have been removed. To determine the block 

size distribution that includes blocks as small as 0.001 m3, 

would require a voxelization of 250 subdivisions per axis 

for a 25 × 25 × 25 m3 DFN model. This would result in 

over 15 million voxels, which is computationally 

demanding. A more streamlined algorithm will allow for 

fracture intensities to be determined for higher resolutions 

resulting in smaller voxels and thus giving information 

about smaller blocks belonging to the IBSD. 

 

Figure 12. Block size distributions for all blocks less than or 

equal to 25 m3 for 6 block density thresholds. 

Table 7. R2 values for the best fit power law equation to the data 

for blocks less than or equal to 25 m3. 

Block 

density 
0.4 0.5 0.6 0.7 0.8 0.9 

Power 

law R2 0.84 0.81 0.89 0.94 0.84 0.84 

 

 

Figure 13. Block size distribution curve for a single realization 

of the DFN model with a block density threshold of 0.7, with 

all blocks greater than 25 m3 removed from the dataset. 

7.   DISCUSSION 

This research has allowed for detailed analysis of 

MoFrac-generated DFN models with respect to fracture 

intensity and fracture intensity variability. The method is 

based on voxelization, which allows for a DFN model to 

be discretized into component voxels, equivalent to a 

block model. This means of visualization is important to 

consider when generating mine-scale DFN models. The 

fracture intensity block model would add valuable 

information to existing block models that could relate to 

seismicity, blast design, and ground support (Elmo et al., 

2014). 
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Information on the heterogeneity of fracture intensity 

within a rock mass is important for a variety of 

applications. This includes engineering designs for 

buildings and excavations. Changes in fracture intensity 

play a major role in rock fragmentation by blasting, 

controlling how explosive energy passes through a rock 

mass (Dick, et al., 1992). Consideration of terminations 

between fracture sets plays a significant role in the 

heterogeneity of fracture intensity in a DFN model. 

Future work will focus on relations between fracture sets 

and the resulting effect on fracture intensity variability. 

The development of a CV% curve allows for a complete 

representation of fracture intensity variability within a 

DFN model. The CV% curve will be affected by the 

fracture intensity, orientation and the number of fracture 

sets. This curve can serve as a form of DFN model 

validation and can be used for calibration. Future work 

will include the comparison of CV% curves for a variety 

of DFN recipes. This will allow for further understanding 

of how primary DFN modeling properties affect the CV% 

curve. 

An additional benefit of determining the P32 fracture 

intensity for component voxels of a DFN model is that the 

number and location of null blocks is also determined. 

This is useful information in terms of determining the 

IBSD of a rock mass. A single voxelization process is 

required to determine the IBSD, with the voxel size 

representing the smallest block size of interest. Future 

work will focus on streamlining the IBSD algorithm in 

order to handle voxel volumes less than 1 m3 for large 

DFNs.  

The key components of the IBSD algorithm are 

determining neighboring null blocks and the block 

splitting process. Having flexibility in determining the 

density threshold used for block splitting allows for this 

process to be tailored to specific rock mass conditions. 

This also leads to the possibility of modeling an 

excavation damaged zone (using a much higher density 

threshold in a specific DFN region surrounding 

excavations) together with an expected IBSD in the rock 

mass itself.  

As there is a boundary effect associated with the DFN 

models generated for this paper, it was decided to 

eliminate the largest blocks from the data set which 

occurred along the boundaries. This was done in order to 

find the threshold that yielded data that best fit a power 

law relation. If fractures are allowed to be seeded close to 

the DFN region but out of bounds, or if fracture traces are 

used as seeds on the exterior boundaries of the DFN 

region, the boundary effect can be minimized.  

The block splitting algorithm developed in this research 

is rudimentary at this point. The density threshold 

controls the splitting. A block is split once the density 

threshold is reached. Future work will develop the IBSD 

algorithm to split blocks in ways that better match what 

would be expected in the field. For example, a large 

compound block would ideally be initially split at the 

weakest point of its geometry. 

MoFrac and the built-in metrics are still in development; 

the software is intended to provide inputs such as IBSD 

and CV% of fracture intensity for secondary modeling, 

including flow analysis, slope stability studies, and blast 

fragmentation optimization. Visual and numerical outputs 

will be developed based on the discretization of DFN 

models using a voxelization approach. 
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